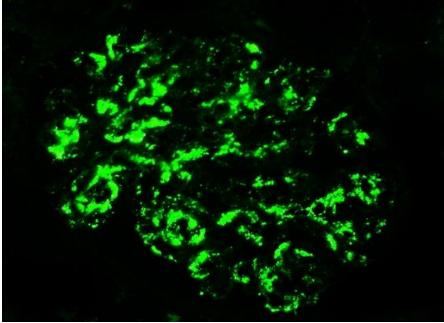
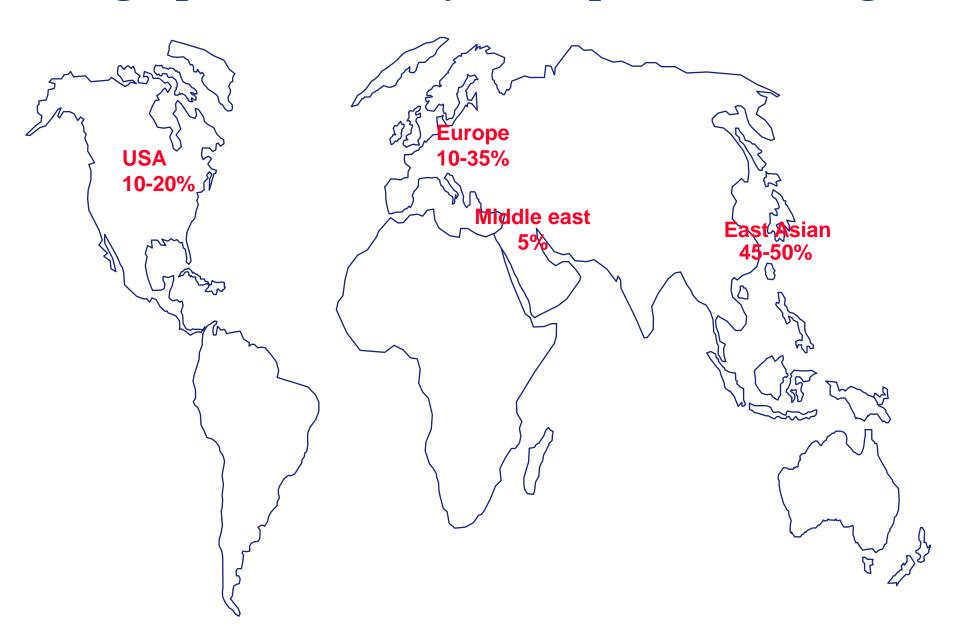

IgA Nephropathy - Prognostic Considerations & Nanjing Jinling Hospital Studies


Caihong Zeng

National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, China



- IgAN is the most common form of primary glomerulonephritis worldwide
- The hallmark of IgAN is the mesangial dominant or codominant deposition of IgA by IF with mesangial proliferation.

Geographic variability in the prevalence of IgAN

The clinical presentation of primary IgAN is variable

- Microscopic hematuria without proteinuria;
- Isolated or Recurrent macroscopic hematuria;
- Asymptomatic microscopic hematuria with proteinuria;
- Nephrotic proteinuria or Nephrotic syndrome;
- Hypertension;
- Acute renal failure;
- Chronic renal failure.

Nephrol Dial Transplant (2012) 27: 1479–1485 doi: 10.1093/ndt/gfr527 Advance Access publication 29 September 2011

Long-term renal survival and related risk factors in patients with IgA nephropathy: results from a cohort of 1155 cases in a Chinese adult population

WeiBo Le, ShaoShan Liang, YangLin Hu, KangPing Deng, Hao Bao, CaiHong Zeng and ZhiHong Liu

Table 1. Demographic and clinical features at biopsy^a

1989 to 2005

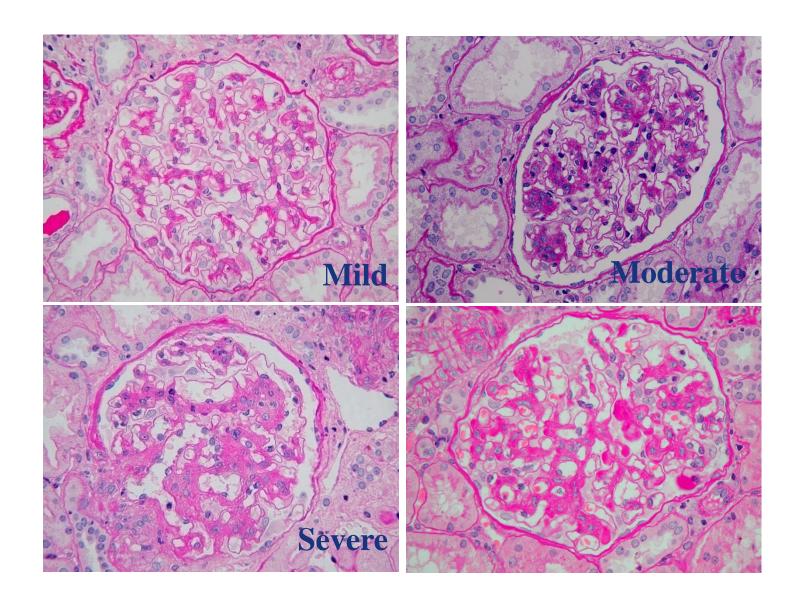
Items	Values	Items	Values
Female (%)	50.3%	Urinary protein (g/day)	0.89 (0.51–1.59) g/day
Age at onset (years)	31 ± 9	<1.0 (%)	55.7%
Age at biopsy (years)	34 ± 9	≥1.0 (%)	44.3%
BMI (Kg/m ²)	22.8 ± 3.3	>3.5 (%)	7.0%
Family history of kidney disease (%)	6.8%	Urinary microscopic hematuria (1000 cells/mL)	400 (60–1380)
Initial presenting clinical features (%)		Serum albumin (g/L)	38.3 ± 6.0
By chance in a health check-up	19.5%	Total cholesterol (mmol/L)	4.9 ± 1.8
Macroscopic hematuria	30.0%	Triglyceride (mmol/L)	1.8 ± 1.3
Edema	23.4%	Serum uric acid (µmmol/L)	369 ± 110
Hypertension	11.2%	eGFR (mL/min/1.73m ²)	89 ± 33
Others	15.2%	SCr (mg/dL)	1.06 ± 0.55
Previous macroscopic hematuria	35.9%	CKD Stage 1 (%)	47.6%
Isolated macroscopic hematuria	22.2%	CKD Stage 2 (%)	31.6%
Recurrent macroscopic hematuria	13.7%	CKD Stage 3 (%)	18.3%
Persistent hypertension (%)	31.0%	CKD Stage 4 (%)	1.9%
. , ,		CKD Stage 5 (%)	0.6%

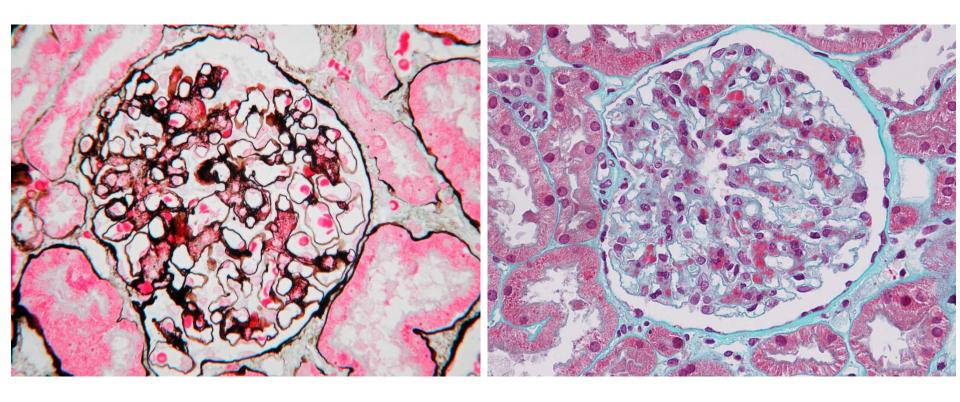
^aCKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; SCr, serum creatinine; ESRD, end-stage of renal disease. Values are expressed as mean ± SD or median (interquartile range). Categorical variables are expressed in percentages. Calculation of MAP and eGFR is detailed in the text.

Am J Nephrol 2014;40:43-50 DOI: 0.1139/000304934

Received: February 27, 2014 Accepted: May 29, 2014 Published online: July 2, 2014

Long-Term Outcome of IgA Nephropathy Patients with Recurrent Macroscopic Hematuria

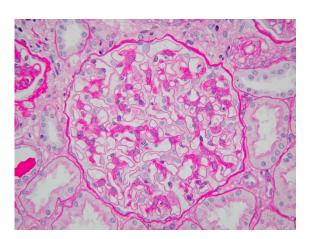

WeiBo Table 1. Demographic and clinical features at biopsy

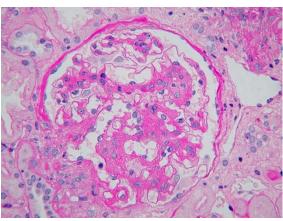

National (
Nanjing, 0	

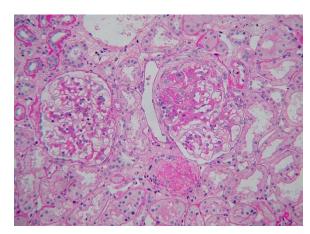
Va Item	RMH $(n = 158)$	IMH $(n = 256)$	NMH $(n = 741)$	p value
Female, %	59.5	58.2	45.6 ^{a, e}	< 0.001
Age at onset, years	26±9	29±9°	32±9 ^{a, e}	< 0.001
Age at biopsy, years	30±9	32±9°	35±9 ^{a, e}	< 0.001
Body mass index, kg/m ²	21.5±2.9	22.5±3.0°	23.1±3.4 ^{a, e}	< 0.001
Family history of CKD, %	11.1	4.8^{d}	6.7	0.05
Hypertension ≥140/90 mm Hg, %	14.0	14.8	40.3 ^{a, e}	< 0.001
Proteinuria at biopsy, g/day	0.66 (0.38-1.52)	0.78 (0.41-1.42)	0.97 (0.58-1.65) ^{a, e}	< 0.001
Proteinuria at biopsy (categorical)				< 0.001
<0.5 g/24 h, %	38.1	31.5	19.1	
0.5–1.0 g/24 h, %	25.8	29.5	33.1	
≥1.0 g/24 h, %	36.1	38.9	47.8	
Urinary microscopic hematuria, log cells/μl	6.6±2.1	6.6 ± 2.1	$5.1\pm2.0^{a, e}$	< 0.001
Serum albumin, g/l	39.4±5.4	38.9±5.1	$37.8\pm6.4^{a, f}$	< 0.001
Total cholesterol, mmol/l	4.5±1.3	4.4±1.1	5.2±2.1 ^{a, e}	< 0.001
Triglyceride, mmol/l	1.5±1.0	1.6±1.3	1.9±1.4 ^{a, e}	< 0.001
Serum uric acid, mmol/l	324±84	336±95	390±114 ^{a, e}	< 0.001
Serum creatinine, mg/dl	0.89 ± 0.34	0.95±0.49	1.13±0.59 ^{a, e}	< 0.001
eGFR, ml/min/1.73 m ²	103±26	98±35	84 ± 32^{a}	< 0.001
CKD stage (KDOQI), %				< 0.001
CKD stage 1	71.5	65.2	47.6	
CKD stage 2	20.9	23.8	29.8	
CKD stage 3	7.0	9.7	19.3	
CKD stage 4	0.6	0	2.7	
CKD stage 5	0	1.2	0.5	

 $^{^{}a}$ p < 0.01 RMH vs. NMH; b p < 0.05 RMH vs. NMH; c p < 0.01 RMH vs. IMH; d p < 0.05 RMH vs. IMH; e p < 0.01 IMH vs. NMH; ^f p < 0.05 IMH vs. NMH.

IgAN light microscopy

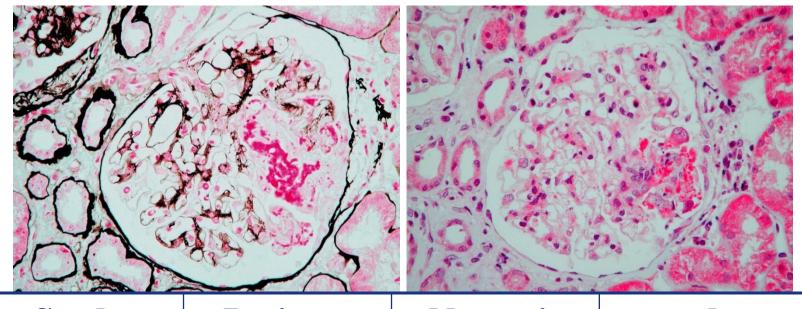




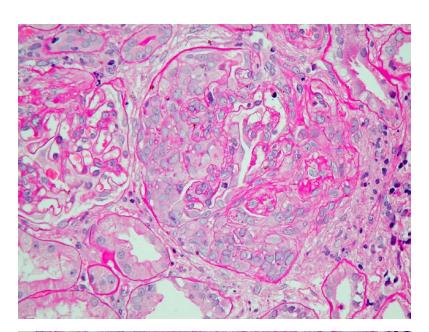

PASM-Masson trichrome

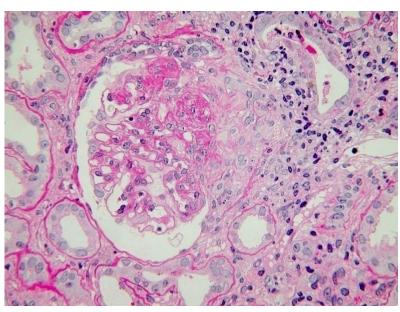
Masson trichrome

The histologic lesions of IgAN are not uniform

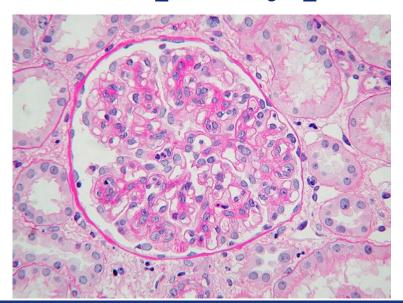


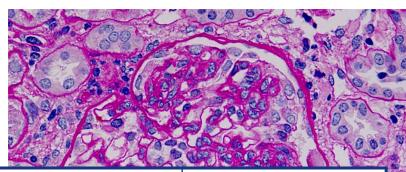
Active lesions in IgAN


- Mesangial hypercellularity
- Endocapillary proliferation
- Necrosis, karyorrhexis,
- Cellular and fibrocellular crescents,
- Macrophage infiltration/mesangiolysis
- Tubulo-interstitial inflammation in nonscarred cortex
- Acute tubular injury

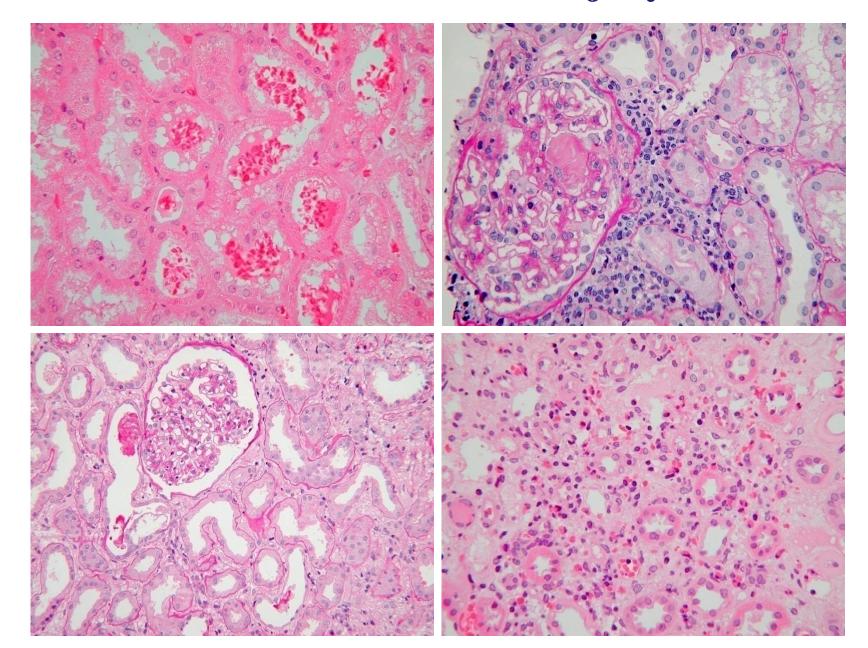

Necrotizing lesion: fibrinoid necrosis

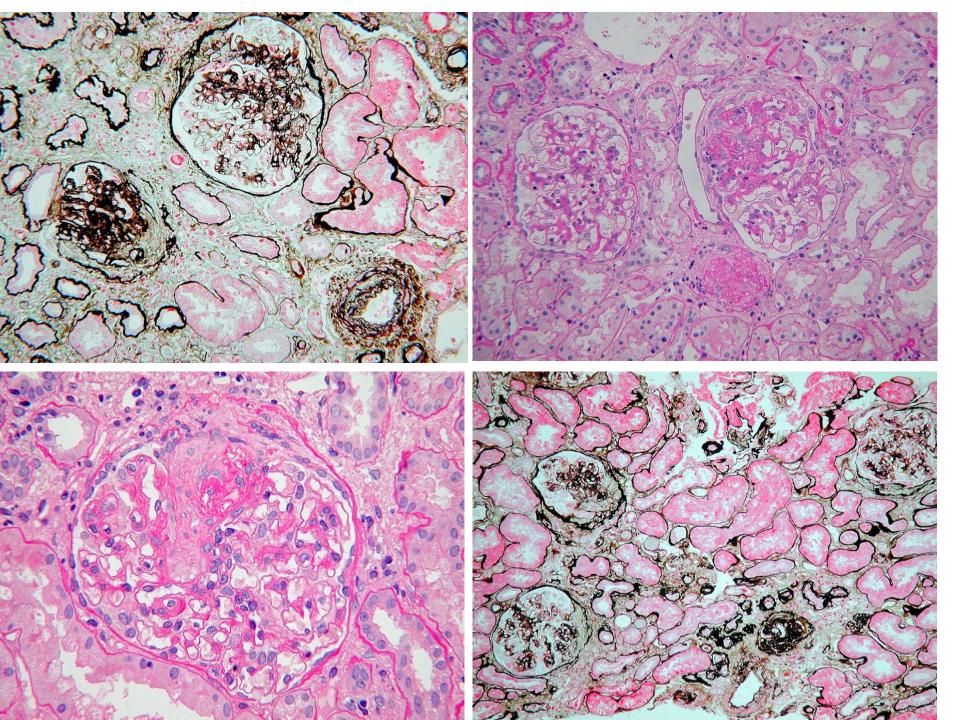
Study	Patients	Necrosis	prevalence
			%
Oxford	265	6	2.3
Nanjing	1026	117	15


Cellular and fibrocellular crescents

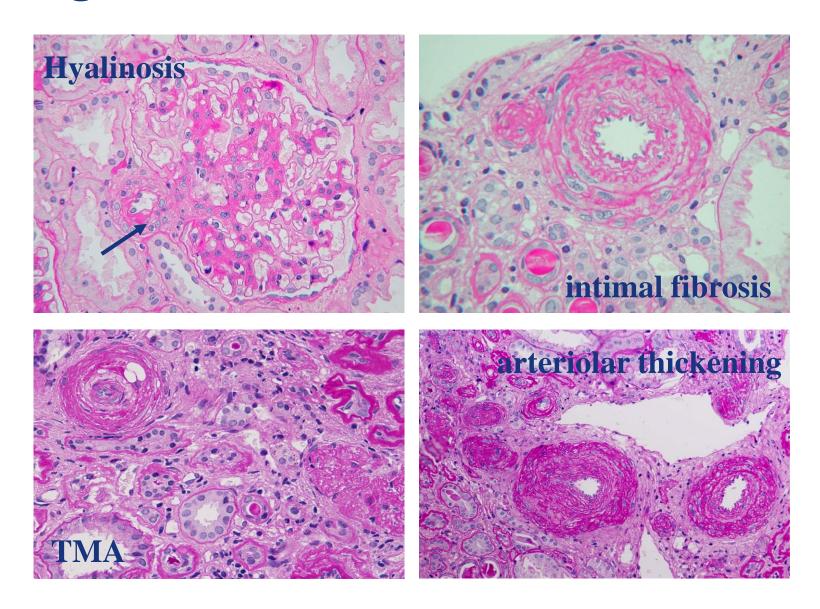


Study	Patients	crescents	prevalence %
Oxford	265	119	45
Nanjing	1026	492	48

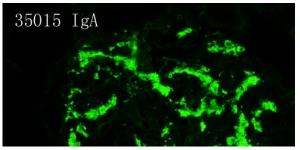

Endocapillary proliferation

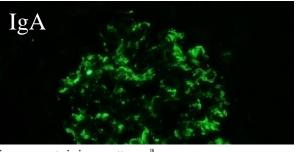

Study	Patients	Endocapillary proliferation	prevalence%
Oxford	265	11	42
Nanjing	1026	113	11

Acute tubular interstitial injury



Chronic lesions In IgAN


- Global glomerulosclerosis
- Segmental glomerulosclerosis
- Fibrous crescents/ tuft adhesions/scar
- Tubular atrophy
- Interstitial fibrosis



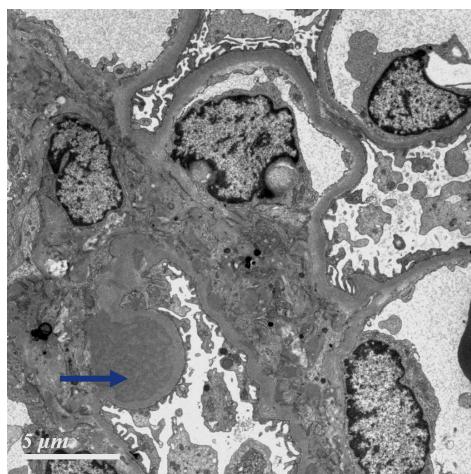
IgAN vasclular lesions

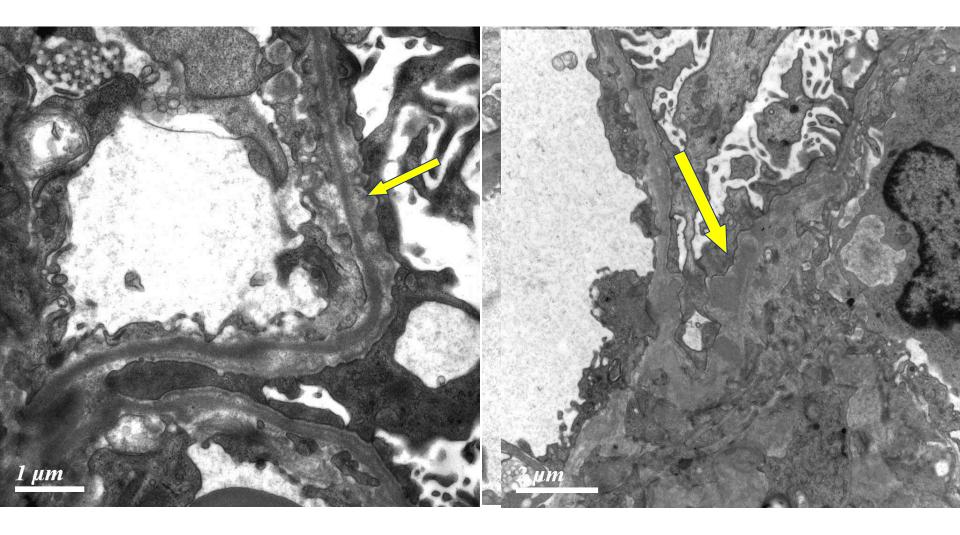
IF of IgAN

Table 1. Correlation of histological features with immunostaining patterns^a

	Mesangial-only IgA $(n = 149)$	Capillary wall IgA $(n = 26)$	P-value	No/trace IgG $(n = 119)$	IgG > trace $(n = 30)$	P-value
Mesangial cellularity score	0.9 ± 0.5	1.3 ± 0.6	0.007	0.9 ± 0.5	1.2 ± 0.6	0.03
% Glomeruli global glomerulosclerosis	8 (0-82)	11 (0-55)	>0.1	11 (0-82)	8 (0-63)	>0.1
% Glomeruli segmental glomerulosclerosis	6 (0–44)	5 (0-33)	> 0.1	4 (0–38)	9 (0–38)	> 0.1
% Glomeruli endocapillary proliferation	0 (0–54)	6 (0–47)	0.003	0 (0-50)	4 (0-47)	0.005
% Glomeruli cellular + fibrocellular crescents	0 (0–55)	0 (0-39)	> 0.1	0 (0-55)	0 (0-39)	>0.1
% Tubular atrophy	10 (0-70)	10 (0-30)	> 0.1	10 (0-70)	10 (0-60)	> 0.1
% Interstitial fibrosis	10 (0-70)	10 (0-30)	> 0.1	10 (0-70)	10 (0-60)	> 0.1
Arteriosclerosis score	0 (0–2)	0 (0-2)	> 0.1	0 (0-2)	0 (0-2)	> 0.1
Arteriolar hyalinosis score	0 (0–3)	0 (0–3)	>0.1	0 (0–3)	0 (0–3)	>0.1

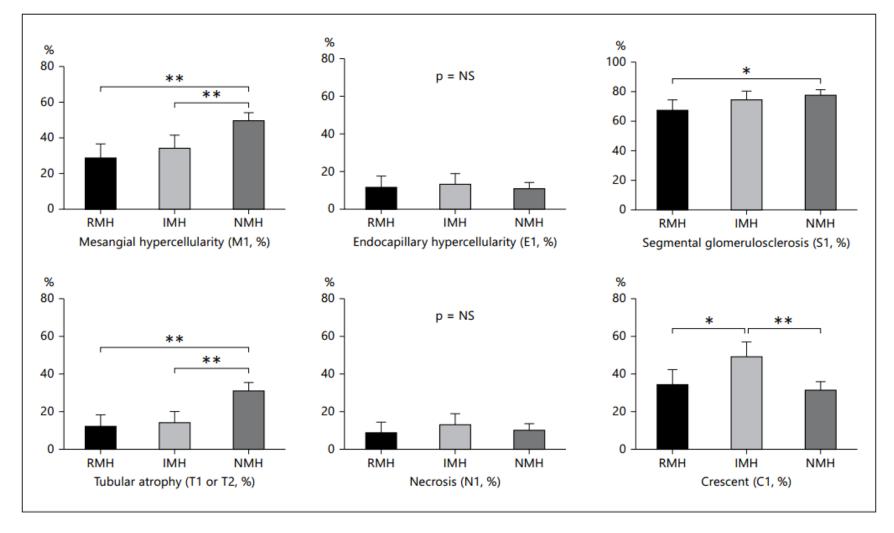

^aData are presented as mean ± SD for normally distributed data or median (range) for non-parametric distributions. **NDT (2011) 26: 2533–2536**


- Co-deposition of C3 is common with IgG, and less common with IgM. Only IgA deposition: 15%
- Predominant IgA1 subclass
- λ more brightly than κ light chains


Am J Kidney Dis 1988;11:425 Am J Clin Pathol 1986;85:548

IgAN Electron Microscopy

• Granular electron-dense immune deposits in the mesangium and paramesangium



Original Report: Patient-Oriented, Translational Research

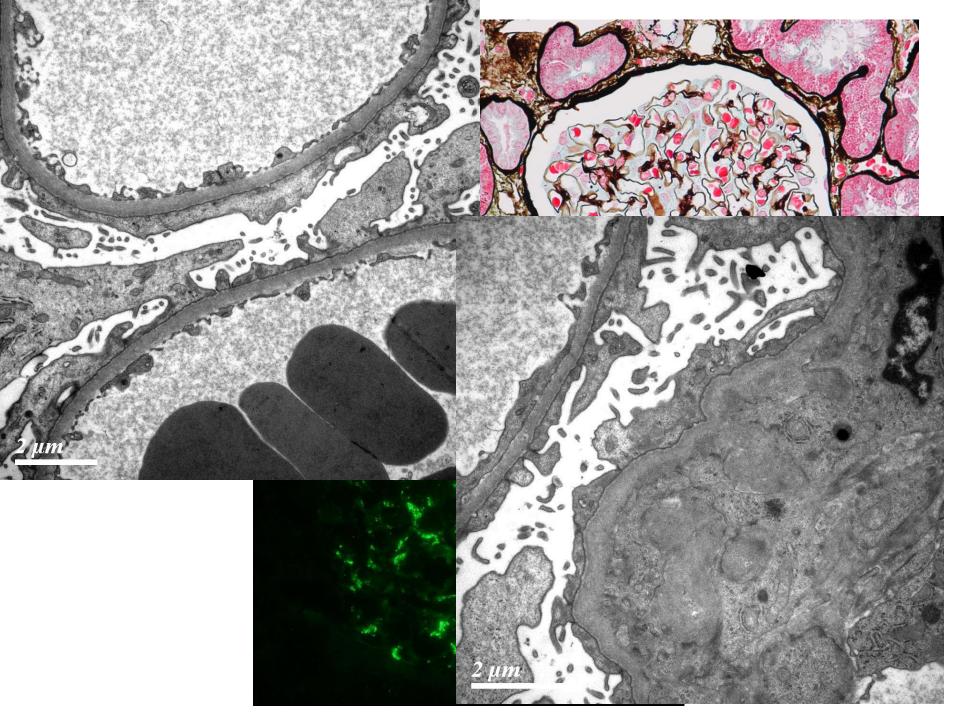

Am J Nephrol 2014;40:43–50 DOI: 0.1159/000504951 Received: February 27, 2014 Accepted: May 29, 2014 Published online: July 2, 2014

Fig. 1. Pathological features at biopsy among different MH patterns. * p < 0.05, ** p < 0.01; NS = not significant.

Minimal change disease like IgAN (MCD-IgAN)

- Clinical features: NS, responsive to steroids
- Pathological features:
 - LM: Normal or minimal change
 - IF: IgA, with or without IgM, C3
 - EM: Electron dense deposits in mesangium, diffuse footprocess effacement

Comparison of demographic, clinical and pathological characteristics

J Nephrol2015 Nov 4. [Epub ahead of print]

Items	MCD-IgAN (n = 247)	Non-MCD-IgAN p			
Male, % Interval between presentation and biopsy	67.6 1 (0.1–408	Items	MCD- $IgAN(n = 247)$	Non-MCD-IgAN $(n = 1121)$	p
(months)			(n = 247)	(n = 1121)	
Age (years)	27.05 ± 1	Glomeruli, median (range)	24 (8-72)	21 (8-61)	0.168
Initial symptom, %			, ,	` '	
Edema	91.9	Global glomerulosclerosis %, median	0 (0-22.2)	13.6 (0-90.0)	< 0.001
Gastrointestinal discomfort	6.1	(range)			
Hypertension Gross hematuria	0	Oxford classification of IgAN, n (%)			
Health examination	0.8		25 (10.0)	100 (26.1)	0.001
Others	1.2	M1	27 (10.9)	408 (36.4)	< 0.001
Hypertension history, %	3.2	E1	0 (0)	105 (9.4)	< 0.001
Hypertension, %	19.0	S1	0 (0)	754 (67.3)	< 0.001
Urinary protein (g/day)	6.33 ± 3.8			, ,	
Grade of urinary protein (g/day), %		T1/T2	12 (4.9)	225 (20.1)	< 0.001
<1.0	5.3	N1	0 (0)	106 (9.5)	< 0.001
1–3.5	11.3	C1	0 (0)	357 (31.8)	< 0.001
>3.5	83.4		0 (0)	337 (31.6)	
Urinary microscopic hematuria (10 ⁴ /ml)	1 (0-1100	Interstitial inflammation, n (%)			< 0.001
Grade of urinary microscopic hematuria (10 ⁴ / ml), %		0	106 (42.9)	72 (6.4)	
<10	81.4	1	138 (55.9)	757 (67.6)	
10–100	13.8	2	` '	` '	
>100	4.9	2	3 (1.2)	212 (18.9)	
Serum albumin (g/l)	23.39 ± 5	3	0 (0)	80 (7.1)	
Total cholesterol (mmol/l)	10.77 ± 3	Vascular lesion, n (%)		, ,	
Triglyceride (mmol/l)	2.69 ± 1.1	. , ,			
Serum uric acid (µmol/l)	380.53 ±	Intimal thickening	35 (14.2)	430 (38.4)	< 0.001
SCr (mg/dl)	0.93 ± 0.1	Hyaline degeneration	82 (33.2)	754 (67.3)	< 0.001
eGFR (ml/min/1.73 m ²)	109.48 ±		(/		

MCD-IgAN immunoglobulin (Ig)A nephropathy with minir estimated glomerular filtration rate

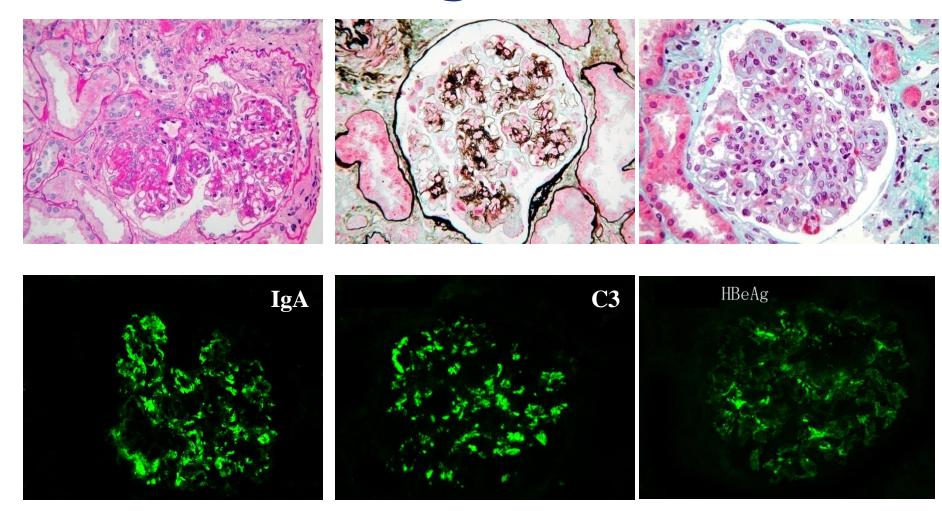
M mesangial hypercellularity, E endocapillary proliferation, S segmental sclerosis or adhesion, T tubular atrophy/interstitial fibrosis, N glomerulus necrosis, C crescents. For other abbreviations, see Table 1

Corticosteroid therapy in IgA nephropathy with minimal change-like lesions: a single-centre cohort study

Iinquan Wang Research Institute of Nephrology, Jinling Hospital, Nanjing

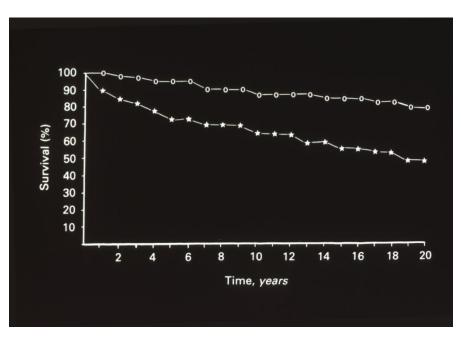
- 27 biopsy-proven adult MCD-IgAN, 15 males and 12 females
- Prednisone:1 mg/kg(maximum 60 mg/day) for 6 weeks or until 2 weeks after CR
- Reduced by 10 mg, followed by tapering 5 mg every 2 weeks down to 30 mg/day, and then 2.5 mg every 2 weeks down to 15 mg/every-other-day,

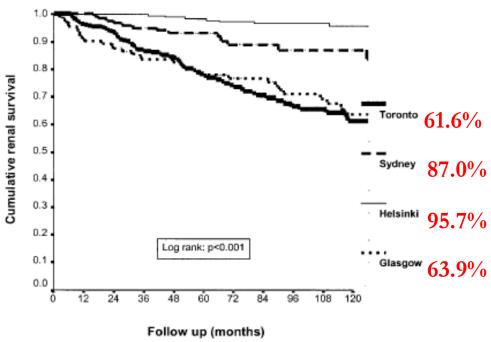
Week after treatment	1	2	4	8	12
complete remission rate(%)	3.7	48.1	92.6	100	100


complication	Infection	alanine aminotransferase elevation	FBG elevation	K<3.5 mmol/L
Cases	2	5	2	5

Differential Diagnosis

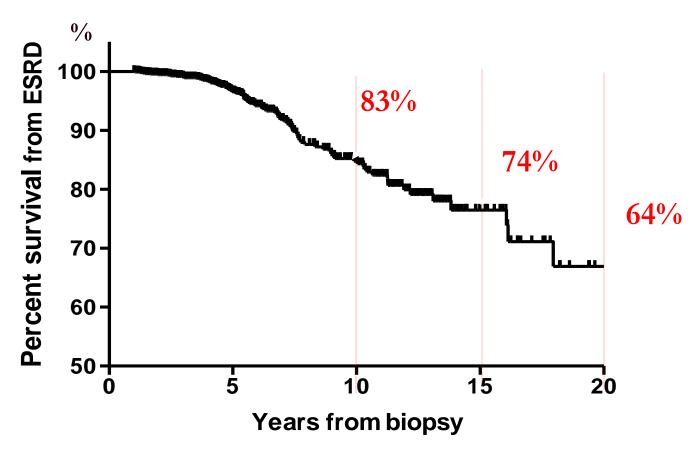
- Secondary IgAN
 - Hepatobiliary diseases
 - Rheumatologic diseases
- Henoch-Schönlein purpura(HSP)


• IgA-dominant postinfectious glomerulonephritis


HBV related IgAN

Prognosis in IgA Nephropathy

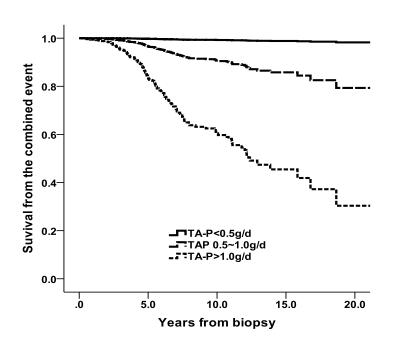
- 10 years 10 25% to ESRD
- 20 years 25 50% to ESRD



Rodicio 1982

Long-term renal survival and related risk factors in patients with IgA nephropathy: results from a cohort of 1155 cases in a Chinese adult population

WeiBo Le, ShaoShan Liang, YangLin Hu, KangPing Deng, Hao Bao, CaiHong Zeng and ZhiHong Liu

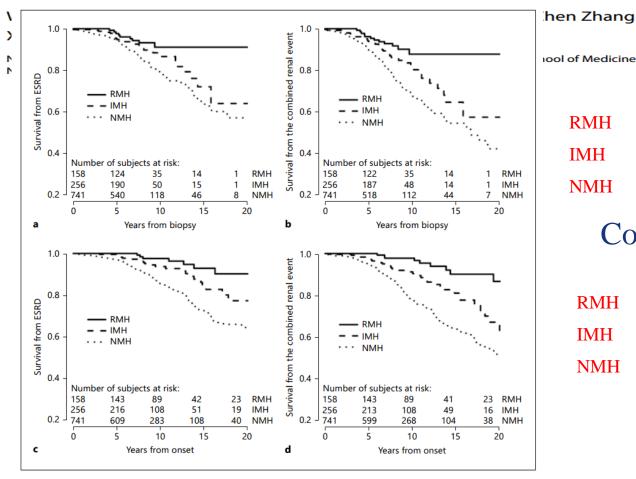


Clinical risk factors for progression

- Poor prognosis
 - Older age
 - Severity of proteinuria
 - Renal impairment
 - Hypertension
 - Increased BMI
- Good prognosis
 - Recurrent macroscopic hematuria
- No impact on prognosis
 - Sex
 - Ethnicity
 - Serum IgA levels

Long-term renal survival and related risk factors in patients with IgA nephropathy: results from a cohort of 1155 cases in a Chinese adult population

WeiBo Le, ShaoShan Liang, YangLin Hu, KangPing Deng, Hao Bao, CaiHong Zeng and ZhiHong Liu


- •Higher level of proteinuria, hypertension, impaired renal function, and hyperuricemia are independent predictors of worse prognosis.
- •Sustained proteinuria >1.0g/day was the strongest predictor of renal failure.

TA-Proteinuria, TA-P, Time-average Proteinuria Combined event: 50% reduction in renal function, or ESRD

Am J Nephrol 2014;40:43–50 DOI: 0.1159/000504954 Received: February 27, 2014 Accepted: May 29, 2014 Published online: July 2, 2014

Long-Term Outcome of IgA Nephropathy Patients with Recurrent Macroscopic Hematuria

nen znang			
ool of Medicine,	ESR		
	5Y(%)	10Y(%)	20Y(%
RMH	98	91	91
IMH	95	89	64
NMH	95	79	57

Combined renal event

	5Y(%)	10Y(%)	20Y(%)
RMH	96	90	90
IMH	94	83	55
NMH	89	71	41

Fig. 2. a-d Kaplan-Meier renal survival curve of IgAN patients with different MH patterns.

The strongest independent predictors of poor outcome in adult and pediatric IgAN

- Extensive interstitial fibrosis and tubular atrophy,
- High index scores for glomerular and/or tubulointerstitial damage (based on semiquantitative scales),
- Higher class designations, as per the Lee and Haas classification systems.

D'Amico G. (2004). Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin Nephrol 24:179–96.

Weaker predictors of poor outcome in adult and pediatric IgAN

- Extensive segmental to global glomerulosclerosis,
- Cellular crescents,
- Prominent hyaline arteriolosclerosis, and
- Immune deposits extending into glomerular capillary loops.

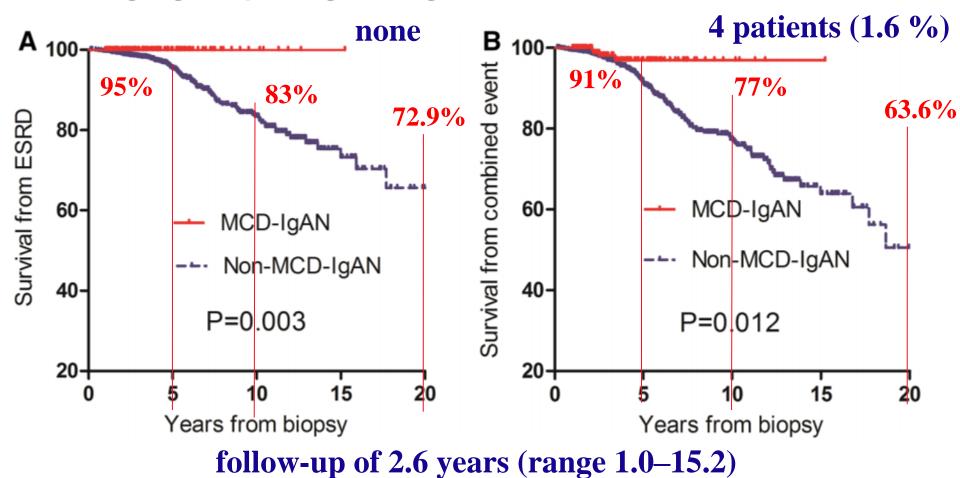
D'Amico G. (2004). Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin Nephrol 24:179–96.

Proposed histologic features for progression

- Poor prognosis
 - LM
 - Capsular Adhesions & crescents
 - glomerulosclerosis,
 - Tubular atrophy
 - interstitial fibrosis
 - Vascular wall Thickening
 - **IF**
 - Capillary loop IgA Deposits
 - Only IgA deposit
 - EM
 - Mesangiolysis
 - mesangial hypercellularity
- Good prognosis
 - Minimal light microscopic abnormalities
- No impact on prognosis
 - Intensity of IgA deposits
 - Co-deposition of IgG, IgM or C3

Prognostic studies of extracapillary proliferation in primary IgAN

References	Year	Cases	Predicting value	Inclusion criteria
Boyce et. al	1986	112	•	At least one year of further observation since the apparent onset.
Freese et. al	1998	67		Kidney transplant patients with native IgAN.
Hogg et. al	1994	80		Follow up>4 years
Bitencourt et. al	2004	56		Patients with one or more crescents.
El Karoui	2010	121		Adults
D'Amico et. al	1986	292		Follow up>1 year since the apparent onset.
Edstrom Halling et. al	2012	127		Patients with IgAN.
Alamartine et. al	1993	510	0	All primary IgAN patients.
Chacko et. al	2005	374		All primary IgAN patients.
Pankhurst et. al	2009	363	0	Patients with IgAN or HSPN.
Cattran DC et. al	2009	256	0,□	Patients with IgAN.
Zeng et. al	2012	1026	○, □	Patients with IgAN


Univariate \blacksquare = significant, \bigcirc = not significant; Multivariate \blacksquare = significant, \square = not significant

Long-term outcome of IgA nephropathy with minimal change disease: a comparison between patients with and without minimal change disease 247 MCD-IgAN, 1121 Non-MCD-IgAN

Xiao-Wei $\text{Li}^{1,2} \cdot \text{Shao-Shan Liang}^2 \cdot \text{Wei-Bo Le}^2 \cdot \text{Shui-Qin Cheng}^2 \cdot \text{Cai-Hong Zeng}^2 \cdot \text{Jin-Quan Wang}^2 \cdot \text{Zhi-Hong Liu}^2$

ISN RPS

The Oxford Classification of IgA nephropathy

Pathology variables that were independently predictive of clinical outcome

- Mesangial hypercellularity
- Segmental glomerulosclerosis/adhesion
- Endocapillary hypercellularity (segmental or global)
- Tubular atrophy/interstitial fibrosis

Kidney International (2009) 76, 546–556; Kidney International (2009) 76, 534–545

Curr Opin Nephrol Hypertens. 2013 Mar 20

Reference	Centre	Patients:		% storoid		Storoid /	Antihyportonciyo	Renal outcome	Rate of loss of renal function, MV	Interaction with IS	Other
Oxford Classification study [1,2]	Multicentre, Europe, A		Pred	icted	out	com	le		M, T	Е	
Alamartine et al. [11]	Single centre		13 st	udies	5				-	_	E, S, T predict outcome in UV analysis
El Karoui et al. [10 [®]]	Single centre	N /						E, S, T	_		
dström Halling et al. [12]	Single centre paediatric	M	4						-	_	M, E, T, Cresce predict outco in UV
erzenberg et al. [13]	Multicentre, Canada	E	2						S, T	Crescents, E	
ang <i>et al.</i> [14]	Single centre		indirect	ovidonce	·Fig	acnone	ivo to		_	_	
Catafuchi et al. [9 [®]]	Single centre		immuno			_	176 10		_	Crescents, S	Optimal cut-off for crescents 6.8%
ataoka et al. [15]	Single centre impact of	S	4						-	_	BMI
e et al. [16]	Single centre	D	-							_	
Noriyama et al. [17]	Single centre impact of syndrome	T	10						-	low T predicts response to steroids	
hi <i>et al</i> . [18]	Single centre	1	10						-	E	
hima et al. [19]	Japan, paed			proteinur	a)			proteinuria,	s — inc.	_	7 reached end-point
nu et al. [20]	Circle control IIC	54 A	All IgAN	35%	78%			not eGFR)			
eng et al. [20] eng et al. [5]	Single centre, US Multicentre, China	1026 A	All IgAN All IgAN	35% 31%	89%	E, Crescents,	_	М, Т	M, T		S without adhes

ORIGINAL ARTICLE

Extracapillary proliferation and arteriolar hyalinosis are associated with long-term kidney survival in IgA nephropathy

Yoshikatsu Kaneko¹ · Kazuhiro Yoshita¹ · Emiko Kono¹ · Yumi Ito¹ · Naofumi Imai¹ · Suguru Yamamoto¹ · Shin Goto¹ · Ichiei Narita¹

- Extracapillary proliferation and arteriolar hyalinosis were independently associated with renal outcome in patients with UPC≥0.5 g/day.
- Arteriolar sclerosis was significantly associated with higher UP, higher MAP, and lower eGFR at the diagnosis.

Original Article

Mesangial C4d deposition: a new prognostic factor in IgA nephropathy

Table 2. Clinical and pathological data of the patients at the time of renal biopsy and evolution to ESRD in the follow-up according to the C4d staining

Clinical and pathological data	C4d+ $(N = 19)$	C4d – $(N = 40)$	P-value
Age (year)	39.4 ± 12	27.9 ± 12	0.002
Gender male (%)	57.9%	82.5%	0.058
Macroscopic haematuria	44.4%	71.8%	0.04
Hypertension	57.9%	17.5%	0.003
Henoch-Schönlein purpura (%)	10.5%	15%	0.4
Urinary protein excretion (g/day)	3.0 ± 1.9	2.1 ± 2.2	0.1
Serum creatinine (mg/dl)	2.6 ± 1.5	1.3 ± 0.8	0.004
eGFR (ml/min/1.73 m ²)	44 ± 33	80 ± 33	0.001
Glomeruli showing sclerosis (%)	35 ± 30	13.3 ± 22	0.01
Glomeruli showing crescents (%)	4.9 ± 9.8	1.4 ± 4.2	0.1
Mesangial proliferation moderate—severe	26.3%	17.5%	0.4
Interstitial fibrosis moderate–severe	52.6%	10%	0.001
Evolution to ESRD in the follow-up	42.1%	7.5%	0.003

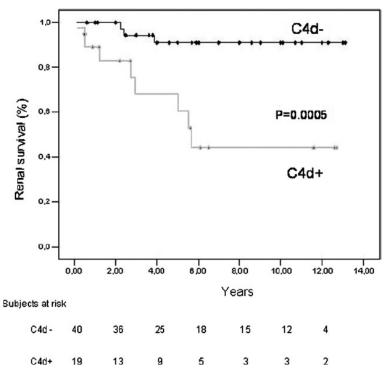
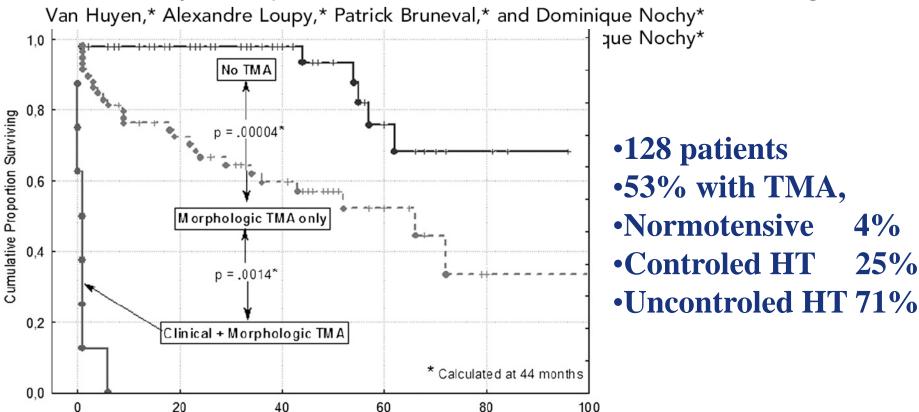
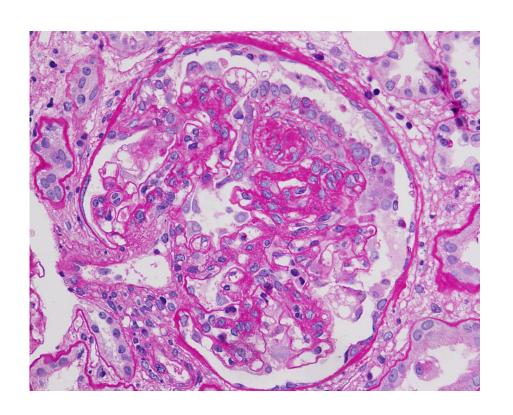
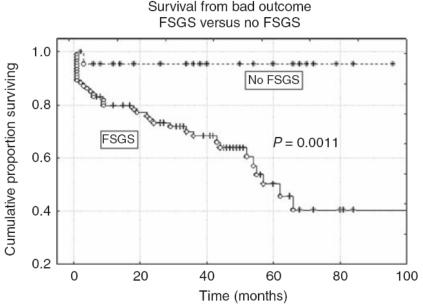



Fig. 3. Kaplan–Meier renal survival according to C4d positive (+) and negative (-) staining.


A Clinicopathologic Study of Thrombotic Microangiopathy in IgA Nephropathy


Time (months)

Khalil El Karoui,*[†] Gary S. Hill,* Alexandre Karras,[‡] Christian Jacquot,[‡] Luc Moulonguet,[§] Olivier Kourilsky,^{||} Véronique Frémeaux-Bacchi,[¶] Michel Delahousse,** Jean-Paul Duong Van Huyen,* Alexandre Loupy,* Patrick Bruneval,* and Dominique Nochy*

Focal segmental glomerulosclerosis plays a major role in the progression of IgAN

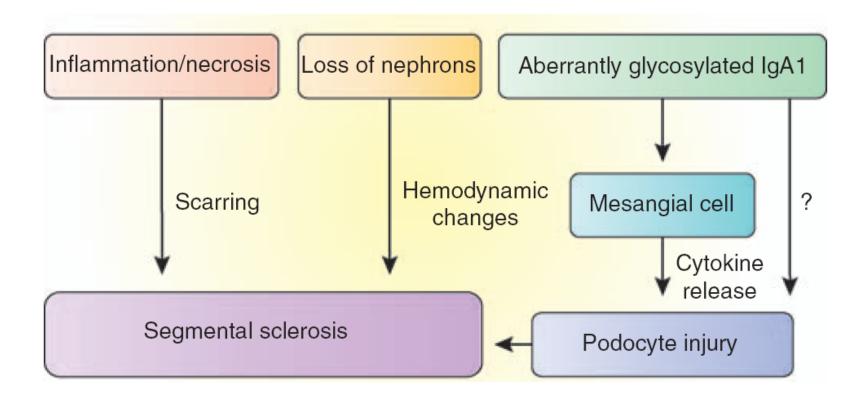
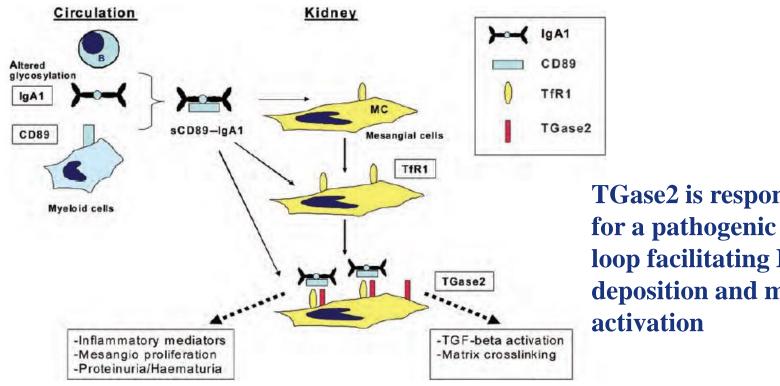


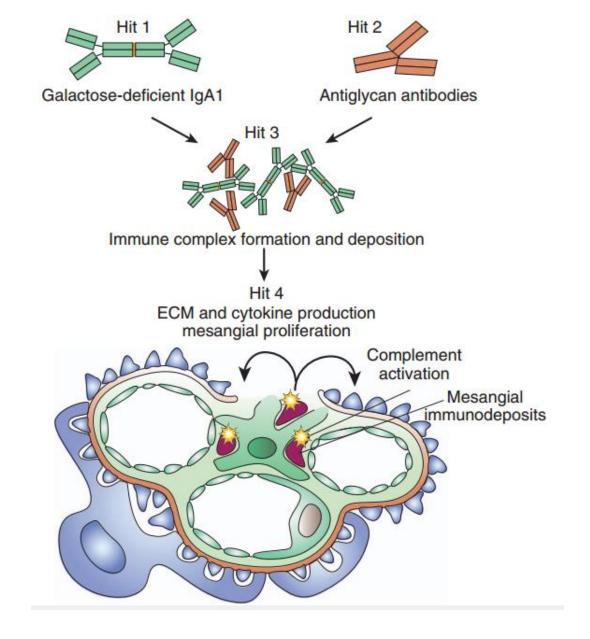
Figure 3 | **Survival from bad outcome**—**all cases.** Kaplan–Meier survival curves, comparing survival from bad outcome for all cases with focal segmental glomerulosclerosis (FSGS) compared with those without FSGS. Bad outcome is defined as doubling of serum creatinine (SCr) or need for dialysis.

• with the cellular and collapsing forms having particularly bad outcomes, using modified Columbia criteria.

- The interesting glomerular epithelial cell proliferation is not sufficient to classify these as typical collapsing lesions.
- These lesions are linked to a poor prognosis is important
- Perhaps 'active proliferative sclerosis' or 'sclerosis with epithelial reactivity' would come closest to capturing the essence of the lesions as described.


Possible pathways by which segmental glomerulosclerosis develops in IgA nephropathy.

Possible Pathogenesis of IgAN


- Abnormal glycosylation of IgA
- Ab against abnormally glycosylated IgA
- Defective clearance of circulating IgA complexes
- Increased affinity for IgA deposits in mesangium
- Mucosal excess Ab reaction in response to Ag exposure
- Increased mucosal permeability to Ag
- Genetic susceptibility

Soluble CD89 as a new ligand of CD71 expressed on mesangial cells of IgAN patients and as inducers of transglutaminase 2 in their mesangium.

TGase2 is responsible for a pathogenic amplification loop facilitating IgA1–sCD89 deposition and mesangial cell

J. Exp. Med.2012 Vol. 209 No. 4 793-806 Nephrol Dial Transplant (2013) 28: 794–797

The multihit pathogenesis model of IgA nephropathy

Kidney Int. 2015 Nov;88(5):974-89

Abnormal miR-148b Expression Promotes Aberrant Glycosylation of IgA1 in IgA Nephropathy

Grazia Serino,*[†] Fabio Sallustio,*[†] Sharon N. Cox,* Francesco Pesce,* and Francesco P. Schena*[†]

*Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy; and †Centro Addestramento Ricerca Scientifica in Oncologia (C.A.R.S.O.) Consortium, Valenzano, Italy

- Upregulation of miR-148b directly correlated with levels of galactose-deficient IgA1.
- MiR-148b modulates IgA1 O-glycosylation and the levels of secreted galactose-deficient IgA1.
- Abnormal expression of miR-148b may explain the aberrant glycosylation of IgA1.

Original Article

Role of let-7b in the regulation of *N*-acetylgalactosaminyltransferase 2 in IgA nephropathy

Grazia Serino^{1,2}, Fabio Sallustio^{2,3}, Claudia Curci², Sharon N. Cox¹, Francesco Pesce^{1,4}, Giuseppe De Palma² and Francesco P. Schena^{2,5}

- Let-7b expression levels were higher in IgAN patients
- GALNT2 levels were significantly lower in IgAN patients
- Let-7b targets GALNT2, responsible for a decreased GALNT2 expression in IgAN

Kidney Int. 2015 Nov 18. doi: 10.1038/ki.2015.333.

In a retrospective international study, circulating miR-148b and let-7b were found to be serum markers for detecting primary IgA nephropathy

Grazia Serino^{1,2,3,12}, Francesco Pesce^{4,12}, Fabio Sallustio^{1,5}, Giuseppe De Palma¹, Sharon N. Cox^{1,2}, Claudia Curci¹, Gianluigi Zaza⁶, Kar N. Lai⁷, Joseph C.K. Leung⁷, Sydney C.W. Tang⁷, Aikaterini Papagianni⁸, Maria Stangou⁸, Dimitrios Goumenos⁹, Miltiadis Gerolymos⁹, Kazuo Takahashi¹⁰, Yukio Yuzawa¹⁰, Shoichi Maruyama¹¹, Enyu Imai¹¹ and Francesco P. Schena¹

• Serum levels of the combined miRNA biomarker, let-7b and miR-148b, appears to be a novel, reliable, and noninvasive test to predict the probability of having IgAN

journal homepage: www.FEBSLetters.org

Increased miR-374b promotes cell proliferation and the production of aberrant glycosylated IgA1 in B cells of IgA nephropathy

Shuai Hu, Hao Bao*, Xiaodong Xu, Xianguang Zhou, Weisong Qin, Caihong Zeng, Zhihong Liu*

National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China

- miR-374b up expression promotes B cell proliferation and aberrant glycosylation of IgA1 by targeting PTEN and Cosmc in B cells of IgA nephropathy.
- Inhibition of miR-374b prevents the B cell proliferation and aberrant glycosylation of IgA1
- It might represent a new therapeutic approach for IgAN

© 2013 International Society of Nephrology

Kidney Int2014 Mar;85(3):624-35.

MiR-223 downregulation promotes glomerular endothelial cell activation by upregulating importin $\alpha 4$ and $\alpha 5$ in IgA nephropathy

Hao Bao¹, Hao Chen¹, Xiaodong Zhu¹, Minchao Zhang¹, Genhong Yao¹, Yusheng Yu¹, Weisong Qin¹, Caihong Zeng¹, Ke Zen¹ and Zhihong Liu¹

- miR-223 downregulation promotes glomerular endothelial cell activation by upregulating importin $\alpha 4$ and $\alpha 5$ in IgAN.
- Monitoring the level of miR-223 in circulating endothelial cells may provide a noninvasive method for evaluating the severity of IgAN

Thank you!

